
CONTENTS

alex-levesque.com

MTHE 217 - Lecture Notes
Algebraic Structures with Applications

Prof. Felix Parraud • Fall 2025 • Queen’s University

Contents

1 Propositional Logic 3
1.1 Connectives . 3

2 Valid Arguments 5
2.1 Statement Definitions . 5
2.2 Logical Relationships . 5
2.3 Important Tricks and Definitions . 5

3 Proof Examples 7
3.1 Proof with multiple premises . 7
3.2 Methods of proof . 8
3.3 Logic Gates . 8

4 Set Theory 9
4.1 Quantifiers and definitions . 9
4.2 Sets . 9

5 Operations on Sets 10
5.1 Definitions . 10
5.2 Proof: A ⊆ B ⇔ A ∩B = A . 10
5.3 Finite and Disjoint Sets . 10
5.4 Inclusion-Exclusion Theorem . 11

6 Equivalence Relations and Functions 12
6.1 Cartesian Product . 12
6.2 Binary Relation . 12
6.3 Orderings . 12
6.4 Equivalence Relations . 12

7 Equivalence class and congruence classes 14
7.1 Congruence is an equivalence relation proof 14
7.2 Equivalence class and congruence class 14
7.3 Partition . 15

8 Functions 16
8.1 Definition . 16

1

http://alex-levesque.com

CONTENTS

8.2 Images . 16

9 Function properties 17
9.1 Injective, Surjective, Bijective . 17
9.2 Composition of Functions . 17
9.3 Identity function and inverses of functions 17

10 Inverse of a Function 18
10.1 Bijection-Invertibility Equivalence . 18
10.2 Cardinality . 19

11 Induction Principle 20
11.1 Proof by Induction . 20

12 Factorization 21

13 Division Algorithm 22
13.1 Division Algorithm . 22
13.2 Greatest Common Divisor . 22

14 The Euclidean Algorithm 23

15 Modular Arithmetic 24
15.1 Operations in Zn . 24

16 Rings and Fields 25
16.1 Rings . 25
16.2 Fields . 25

17 Cheat Sheet 26
17.1 Propositional Logic . 26
17.2 Proof Techniques . 26
17.3 Set Theory . 27
17.4 Relations . 27
17.5 Equivalence Classes . 27
17.6 Functions . 28
17.7 Inverses & Cardinality . 28
17.8 Induction Principle . 28

2

1 PROPOSITIONAL LOGIC

1 Propositional Logic

Our goal is to replace words with symbols, and to avoid quantifiers.

A proposition is a sentence or assertion that is true (T) or false (F), but not both

A statement is a proposition, or two statements joined by a connective

1.1 Connectives

Connectives (or boolean operators) are functions that take one or more truth values and
output a truth value

Negation (not)

Let p be a proposition. The negation of p, denoted by ¬p, is the denial of p

If p is T , then ¬p is F

The negation or “not” gate is depicted by

Conjunction (and)

The conjunction of p and q is denoted by p ∧ q It can also be calculated by pq

The conjuction gate is depicted by

Disjunction (or)

The disjunction of p and q is denoted by p ∨ q It can also be calculated by p+ q

OR is true if at least one of the statements is true.

XOR is true if exactly one of the statements is true, but not both, and has the same
truth table as ¬(p ↔ q)

3

1 PROPOSITIONAL LOGIC

The disjunction gate is depicted by

Conditional (if p, then q)

The conditional of p and q is denoted by p → q, where p is called the antecedent and q is
called the consequent of the conditional. This is the same as (¬q ∨ p)

Intuition: The conditional promises that whenever p holds, q must also hold If p never
happens (false), the promise is not broken, so the conditional is automatically true

Biconditional (iff)

The biconditional of p and q is denoted by p ↔ q, and can be thought of as “if and only
if” This can also be written as (p → q) ∧ (q → p)

More Definitions

The converse of p → q is q → p The inverse of p → q is ¬p → ¬q The contrapositive
of p → q is ¬q → ¬p

4

2 VALID ARGUMENTS

2 Valid Arguments

A premise is a statement (a declarative sentence, either T or F) that is assumed to be
true within an argument

When writing a final solution, we write the premises, then the conclusion:

[¬b → (p ↔ r)] ∧ [¬b → r] ∧ [p → ¬r]

Conclusion: ¬r

2.1 Statement Definitions

A statement is called a tautology if it is always true (e.g. s = p ∨ ¬p)

A statement is called a fallacy if it is always false (e.g. s = p ∧ ¬p)

2.2 Logical Relationships

Let s and q be two statement forms involving the same set of propositions

We say that s logically implies q and write s ⇒ q if whenever s is true, q is also true

We say that s logically equivalent q and write s ⇔ q if both s and q have identical truth
tables

2.3 Important Tricks and Definitions

a true statement cannot imply a false one

Contradiction (fallacy) p ∧ ¬p ⇔ F

Tautologies Law of excluded middle: P∨¬P = T Law of non-contradiction: ¬(P∧¬P) =
T

p ∧ F ⇔ F p ∧ T ⇔ p p ∨ T ⇔ T p ∨ F ⇔ p

if the engine fails, then part p or part q is failing ¬(p ∧ q) ⇔ (¬p) ∨ (¬q)

Distributivity p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

Contrapositive if P implies Q, then not Q implies not P P ↔ Q ≡ (P → Q)∧ (Q → P)

De Morgan’s laws: ¬(P ∧Q) ≡ (¬P ∨ ¬Q) ¬(P ∨Q) ≡ (¬P ∧ ¬Q)

Double negation ¬(¬P) ≡ P

Absorption if it rains, it is wet, but, if it isn’t wet, it didn’t rain p ∧ (p ∨ q) ⇔ p
p ∨ (p ∧ q) ⇔ p

Modus ponens: (P → Q), P ∴ Q, means If P implies Q, and P is true, then Q must be
true

Example: If it rains, then the ground is wet. So, when it rains, the ground is wet. However,
if the ground is wet, it did not necessarily rain.

5

2 VALID ARGUMENTS

Modus tollens: (P → Q),¬Q ∴ ¬P , means if P implies Q, and Q is false, then P must
also be false

Example: If it rains, then the ground is wet. If the ground is not wet, then it did not rain.

6

3 PROOF EXAMPLES

3 Proof Examples

A proof is an argument which shows that S ⇒ Q, where S and Q are statement forms

Proof 1

S ⇔ Q if and only if S ↔ Q is a tautology

Forwards proof:

If S ↔ Q is a tautology, then it cannot be false. So, while one statement is true, the other
cannot be false. ∴ if S and Q are T or F at the same time, then S ⇔ Q

Backwards proof:

If S and Q are logically equivalent, S = T and Q = T , or S = F and Q = F , but no
mixed case. ∴ we are always in case of T if S ↔ Q. Hence, S ↔ Q is a tautology

Proof 2

S ⇒ Q iff S → Q is a tautology

Forwards proof:

By definition, if S ⇒ Q, then whenever S is T , Q is also T

Consider the truth table of S → Q, the only case where this is false is when S is T and Q
is F . There is no interpretation of S ⇒ Q where S is T and Q is F

Therefore, in every interpretation, S → Q is T , and is a tautology

Backwards proof:

If S → Q is a tautology, then the interpretation where S is T and Q is false is excluded

Thus, whenever S is T , Q must also be T , and by definition, this means that S ⇒ Q

∴ S ⇒ Q ⇔ (S → Q) is a tautology □

3.1 Proof with multiple premises

Definition: An argument with premises p1, . . . , pn and conclusion q is valid (true) if
p1 ∧ · · · ∧ pn ⇒ q

We can prove ¬b → (p ↔ q) ∧ (r → ¬b) ∧ (p → ¬r) ⇒ ¬r by setting it equal to s and
showing that it is a tautology

Instead of examining 23 = 8 possible values for statements b, p, and r (brute force), we
can prove that s is a tautology by contradiction

If s is not a tautology, there must be a truth-assignment making ¬r = F and q1 = q2 =
q3 = T

Proof:

7

3 PROOF EXAMPLES

¬r = F, r = T

q3 = T, p → ¬r = T, p → F = T, p = F

q2 = T, r → ¬b = T, F → ¬b = T, b = F

q1 = ¬b → (p ↔ r), T → (F ↔ T), T → F = F, but q1 must be true

So, this means that s = F cannot happen ∴ no truth assignment can make s = F , hence,
s is a tautology □

3.2 Methods of proof

1. Directly solve it, i.e. show that P → Q is a tautology
2. Proof by contraposition: show ¬Q ⇒ ¬P , i.e. show that ¬Q → ¬P is a tautology
3. Proof by contradiction: show that ¬P ∨Qis a tautology

3.3 Logic Gates

8

4 SET THEORY

4 Set Theory

4.1 Quantifiers and definitions

: stands for “such that” ∃ stands for “there exists” ∀ stands for “for all”

Let X be the set of all sets which do not contain themselves: X = {Y : Y /∈ Y }. Is X a
member of itself? If it is, then it shouldn’t be. If it’s not, then it should.

We can also apply De Morgan’s law for quantifiers (we can distribute ¬):

¬(∃x, P (x)) ⇔ ∀x,¬P (x) ¬(∀x, P (x)) ⇔ ∃x,¬P (x)

The statement PA(x) is defined as: PA(x) ={
T if x ∈ A,

F if x /∈ A

4.2 Sets

A set S is a collection of objects Subset: A ⊆ B if every element ∈ A is ∈ B Equal sets:
A = B ⇔ ∀x ∈ U, PA(x) ⇔ PB(x)

The universal set U is the set that contains all the objects under consideration in a given
context

Note: in Zermelo-Fraenkel set theory (ZFC), there is actually no absolute universal set.
This would lead to Russell’s paradox

N = {0, 1, 2, . . . } Z = {. . . ,−2,−1, 0, 1, 2, . . . } Q =
{

a
b
: a, b ∈ Z, b ̸= 0

}
R, real numbers

C = {a+ bi : a, b ∈ R, i =
√
−1}

The following holds: N ⊂ Z ⊂ Q ⊂ R ⊂ C

9

5 OPERATIONS ON SETS

5 Operations on Sets

Sets are unordered.

5.1 Definitions

The union of sets, denoted by X ∪ Y , = {x : x ∈ X ∨ x ∈ Y }: everything that’s either
in X or Y

The intersection of sets, denoted by X ∩ Y , = {x : x ∈ X ∧ x ∈ Y } = {x ∈ X : x ∈ Y },
only the elements that X and Y have in common

The set difference of sets, denoted by XY , = {x ∈ X : x /∈ Y } or X ∩Xc: **the elements
that are in X but not in Y

The symmetric difference of sets, denoted by X∆Y , = (X ∪ Y)(X ∩ Y) or (XY) ∪ (Y X):
the elements that are in either X or Y , but not in both

A family of elements of X is an indexed collection (xi)i∈A where A is out index set and
each xi ∈ X

Further:

A∪∅ = A A∪U = U A∪ (B∪C) = (A∪B)∪C A∩U = A If Y ⊆ X, then we sometimes
write Y c = XY for the complement of Y in X

5.2 Proof: A ⊆ B ⇔ A ∩B = A

Forward: Assume that A ⊆ B. That means if x ∈ A, then x ∈ B

So if x ∈ A, then x ∈ A and x ∈ B, which means x ∈ (A ∩B), hence A ⊆ (A ∩B)

Besides, if x ∈ A ∩B, then by definition x ∈ A, hence A ∩B ⊆ A

Since A ⊆ (A ∩B) and (A ∩B) ⊆ A, we get A ∩B = A

Backward: Assume A ∩B = A

Take any x ∈ A. Then x ∈ A ∩B since they are equal

By definition of intersection, x ∈ B as well

Thus every element of A is also in B, i.e. A ⊆ B

Conclusion: A ⊆ B if and only if A ∩B = A

5.3 Finite and Disjoint Sets

Finite sets: Sets X, Y and Z are finite sets if the number of distinct elements in these
sets is given by a natural number (rather than some “infinite cardinal”). When a set is
finite, we use |X| to denote its size

Disjoint sets: Two sets A and B are disjoint if they have no elements in common.
Essentially, they are non-overlapping

10

5 OPERATIONS ON SETS

Pairwise disjoint sets: A collection of sets is pairwise disjoint if every pair of distinct
sets in the collection is disjoint, i.e. Ai ∩ Aj = ∅ for all i ̸= j

If X1, . . . , Xn are pairwise disjoint then |X1 ∪ · · · ∪Xn| = |X1|+ · · ·+ |Xn|

5.4 Inclusion-Exclusion Theorem

If sets X, Y and Z are not disjoint, then:

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |

The last term leaves if the sets are disjoint, because the intersection of disjoint sets is 0

Proof:

|A ∪B| = |A|+ |B| − |A ∩B|

We want to express A ∪B as a union of disjoint sets.

We can start by expression A and B as a union of disjoint sets. Here we are essentially
saying that every set can be split into two disjoint parts using another set

A = (A ∩B) ∪ (A ∩Bc) and B = (A ∩B) ∪ (Ac ∩B)

Now, we can express A ∪B as a union of three disjoint pieces: A ∪B = (A ∩B) ∪ (A ∩
Bc) ∪ (Ac ∩B)

These three sets are pairwise disjoint. So: |A ∪B| = |A ∩B|+ |A ∩Bc|+ |Ac ∩B|

From earlier, we can now rewrite: |A| = |A ∩B|+ |A ∩Bc| and |B| = |A ∩B|+ |Ac ∩B|

|A|+ |B| = (|A ∩B|+ |A ∩Bc|) + (|A ∩B|+ |Ac ∩B|)

|A|+ |B| = 2|A ∩B|+ |A ∩Bc|+ |Ac ∩B|

We can now rearrange and see that the RHS is exactly |A ∪B| from earlier: |A|+ |B| −
|A ∩B| = |A ∩B|+ |A ∩Bc|+ |Ac ∩B|

Therefore: |A ∪B| = |A|+ |B| − |A ∩B|

11

6 EQUIVALENCE RELATIONS AND FUNCTIONS

6 Equivalence Relations and Functions

6.1 Cartesian Product

Definition: For two objects a, b, we write (a, b) for the ordered pair a and b

Definition: The Cartesian product of sets A,B is A×B = {(a, b)|a ∈ A, b ∈ B}

Example: A = {a, b}, B = {1, 2, 3}

A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}

6.2 Binary Relation

Definition: If X and Y are sets, then a binary relation from X to Y is a subset
R ⊆ X × Y . Whenever (x, y) ∈ R, we write xRy and say that “x is related to y under R”

The divisibility relation: Let X = {1, 2, 3, 4}, then D on X is the subset D ⊆ X ×X
given by D = {(2, 2), (2, 4), (2, 6), (3, 3) . . . }. We say a|b if b = Ra for some R ∈ Z

The equality relation: Is the subset E ⊆ X×X given by D = {(1, 1), (2, 2), (3, 3), (4, 4)}

6.3 Orderings

A set X can be ordered with either a partial order or a total order.

Definition: A partial order on X is a binary relation ≤ on X that is reflexive, anti-
symmetric, and transitive

A total order is a partial order where every pair x, y ∈ X satisfies either x ≤ y or y ≤ x

6.4 Equivalence Relations

Definition: A relation E on a set X is an equivalence relation if it is reflexive, sym-
metric, and transitive

Reflexive: xEx for all x ∈ X Everyone is related to themselves

Symmetric: xEy implies yEx for all x, y ∈ X If you’re related to me, then I’m related
to you. Both directions are always allowed.

Transitive: xEy and yEz implies xEz for all x, y, z ∈ X, If A is related to B, and B is
related to C, then A is related to C

Antisymmetric: x ≤ y and y ≤ x implies x = y for all x, y ∈ X The only way two
different things can both be related in both directions is if they’re actually the same thing.
Both directions are only allowed when it’s the same element.

Equivalence Relation (and Classes) Example

Pg. 115, Problem 7

12

6 EQUIVALENCE RELATIONS AND FUNCTIONS

Reflexive: if (x, x) ∈ R for all x ∈ X

(1, 1), (2, 2), (3, 3), (4, 4) are all present, so R is reflexive

Symmetric: if whenever (a, b) ∈ R, then (b, a) ∈ R

(1, 2) and (2, 1) are both in R (3, 4) and (4, 3) are both in R, so R is symmetric

Transitive: if whenever (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R

From (1, 2) and (2, 1), we need (1, 1), true From (1, 2) and (2, 2), we need (1, 2), true From
(2, 1) and (2, 2), we need (2, 2), true etc., R is transitive

Equivalence classes: equivalence class of a is the set of all elements in X that are
related to a under relation R

a = 1, all pairs starting with 1 : (1, 1), (1, 2) ∴ [1] = {1, 2} a = 2, all pairs starting
with 2 : (2, 1), (2, 2) ∴ [2] = {1, 2} = [1], as expected in an equivalence relation a = 3,
all pairs starting with 3 : (3, 3), (3, 4) ∴ [3] = {3, 4} a = 4, all pairs starting with
4 : (4, 3), (4, 4) ∴ [4] = {3, 4} = [3], as expected

The equivalence classes group the elements into disjoint sets: {1, 2}, {3, 4}, this is exactly
the partition ofX induced by R

Congruent modulo

This is an example of an equivalence relation but also its own definition, as follows:

Definition of Congruence modulo n: Fix n ∈ Z. We say a, b ∈ Z are congruent
modulo n and write a ≡ b mod n. Basically, n divides the difference in a and b. Or, a− b
is a multiple of n

Example 1: 10 ≡ 2 mod 4 because 10−2
4

∈ Z

Example 2: 9 ̸≡ 2 mod 3 because 9−2
3

∈ Z

13

7 EQUIVALENCE CLASS AND CONGRUENCE CLASSES

7 Equivalence class and congruence classes

7.1 Congruence is an equivalence relation proof

Definition: Two integers are congruent mod n, n > 0, if the integers leave the same
remainder upon division by n

Congruence is an equivalence relation:

Reflexive:

a ∈ Z, a− a = 0 = 0n,∴ a ≡ a mod n

Symmetric:

∀a, b ∈ Z with a ≡ b mod n, then a − b = qn for some q ∈ Z Thus, b − a = (−q)n and
hence b ≡ a mod n,∴ symmetric

Transitive:

Take a, b, c ∈ Z with a ≡ b mod n and b ≡ c mod n, we want to show that a ≡ c mod n
First, a− b = qn and b− c = rn for some q, r ∈ Z. Adding these two expressions gives
a− c = qn+ rn = (q + r)n,∴ a ≡ c mod n and it is transitive

7.2 Equivalence class and congruence class

Given an equivalence relation ∼ on X, the equivalence class of a ∈ X is the set [a] = {b ∈
X : b ∼ a}. This is the group of all things in X that are related to a

If our equivalence relation is congruence modulo n on Z, then equivalence classes of
integers are called congruence classes.

Congruence classes LEGO analogy

Say we have a set of bricks, and the equivalence relation is that two bricks are equivalent
if they have the same colour

The green bricks will form an equivalence class.

So, every brick is in exactly one bin, thus the bins don’t overlap. This collections of bins
is called a partition of the LEGO set.

Congruence classes example

Suppose we have integers . . . ,−2,−1, 0, 1, 2, . . .

Pick a number n. Suppose n = 4 Now we build 4 buckets, labeled 0, 1, 2, 3

Bucket 0: all integers that leave remainder 0 when divided by 4 [0] = {b ∈ Z : b ≡
0(mod 4)} = . . . ,−8,−4, 0, 4, 8, . . .

Bucket 1: all integers that leave remainder 1 when divided by 4 [1] = {b ∈ Z : b ≡
1(mod 4)} = . . . ,−7,−3, 1, 5, 9, . . .

Bucket 2: all integers that leave remainder 2 when divided by 4 [2] = {b ∈ Z : b ≡
2(mod 4)} = . . . ,−6,−2, 2, 6, 10, . . .

14

7 EQUIVALENCE CLASS AND CONGRUENCE CLASSES

Bucket 3: all integers that leave remainder 3 when divided by 4 [3] = {b ∈ Z : b ≡
3(mod 4)} = . . . ,−5,−1, 3, 7, 11, . . .

These equivalence classes satisfy: Z = [0] ∪ [1] ∪ [2] ∪ [3] This quotient set is exactly the
integers modulo 4

7.3 Partition

Let X be a set, and P (x) be the power set of X, meaning the set of all subsets of X

Y ⊆ P (X) means that Y is some collection of subsets of X

A singular partition is the entire set of equivalence classes grouped together such that:

• every element of X is in exactly one class

• the classes don’t overlap

• and together they cover all of X

Formal Definition: Y is a partition of X if:

• Pairwise Disjoint: No two different subsets in Y overlap. Formally, if A,B ∈ Y
and A ̸= B, then A ∩B = ∅

• Union equals X: All the subsets in Y , taken together, cover X. That is,
⋃

a∈Y A =
X

15

8 FUNCTIONS

8 Functions

8.1 Definition

Definition: A function f : X → Y is a relation Gr(f) ⊆ X × Y which satisfies the
following condition: for all x ∈ X, there exists a unique y ∈ Y with (x, y) ∈ Gr(f)

For x ∈ X, the unique element y ∈ Y such that (x, y) ∈ Gr(f) is denoted y = f(x) and
called the image of x under f

In english, a relation means you can pair elements denoted by (x, y) and collected into a
set Gr(f) ⊆ X × Y . A function holds of every input has some output, and the output is
unique. Informally, a function is a rule that assigns to every element x ∈ X exactly one
element y ∈ Y

The set X is the domain while of f while Y is the range or codomain of f . Gr(f) is the
graph of f

8.2 Images

Let f : X → Y

The image of a set A under f is the set of all outputs of f when the input comes from A

The pre-image of a set B is the set of all inputs that map into B

Pre-image of an element: If we take a single element a ∈ X, then its image: f(a) ∈ Y .
If we take a single element b ∈ Y , then its pre-image is: f−1({b}) = {x ∈ X|f(x) = b}

The image of an element is a single point, while the pre-image of an element can be empty,
one element, or many elements.

16

9 FUNCTION PROPERTIES

9 Function properties

9.1 Injective, Surjective, Bijective

Injective: A function is injective (one-to-one) if for every a, b ∈ X with a ≠ b we have
f(b) ̸= f(a). We can also say f is injective if ∀a, b ∈ X, f(a) = f(b) implies a = b. This
means that no two different inputs collapse to the same output

Surjective: A function is surjective (onto) if for every c ∈ Y there exists some a ∈ X
with f(a) = c. We can also say that Im(f) = Y . This means that a surjective function
has every element of its codomain Y “hit” by at least one input

Bijective: A function which is both injective and surjective is called bijective

Geometric Test

α : R → R

If α is injective, then every horizontal line intersects the graph of α at exactly one point

If α is surjective, then every horizontal line intersects the graph of α at at least one point

Fixing surjectivity

Example: Let f : N → N, f(n) = 2n+ 1

This function is not surjective, because for example, f(n) ̸= 4. The Im(f) is just odd
natural numbers {1, 3, 5, . . . }

But, if we define f : R → R instead, then the image of f can be achieved, thus the
function is now surjective

9.2 Composition of Functions

Given f : X → Y and g : Y → Z, then (g ◦ f)(x) = g(f(x)) is X → Z

Note: composition is not commutative: g ◦ f ̸= f ◦ g, but it is associative: h ◦ (g ◦ f) =
(h ◦ g) ◦ f

9.3 Identity function and inverses of functions

Definition: The identity function idX(x) = x acts like “do nothing”, meaning if you
compose it with any function, nothing changes

f ◦ idX = f = idY ◦ f

Definition: The function g : Y → X is the inverse of f : X → Y if f ◦ g = idY and
g ◦ f = idX . Thus, only bijective functions have inverses.

17

10 INVERSE OF A FUNCTION

10 Inverse of a Function

Let f : X → Y and g : Y → X are functions. g is a compositional inverse of f if both
f ◦ g = idY and g ◦ f = idX

If there is a composition inverse of f , then that compositional inverse is unique

Example: for the function f : {1, 2, 3, 4, 5} → {1, 2, 3, 4}, its compositional inverse is
given below:

If f(1) = 3, then f−1(3) = 1

10.1 Bijection-Invertibility Equivalence

Let f : S → T be a function between sets S and T . Then f is a bijection if and only if
ff is invertible.

(⇒) if f is a bijection, then f is invertible

Suppose f is a bijection. Then:

• f is injective: each element of T has at most one pre-image in S.

• f is surjective: each element of T has at least one pre-image in S.

Together, this means each y ∈ T has exactly one pre-image x ∈ S such that f(x) = y.

Define g : T → S by setting g(y) = x, where x is the unique element in S such that
f(x) = y.

Now check compositions:

• For any y ∈ T :

(f ◦ g)(y) = f(g(y)) = f(x) = y,

18

10 INVERSE OF A FUNCTION

so f ◦ g = idT .

• For any x ∈ S:

(g ◦ f)(x) = g(f(x)) = g(y) = x,

so g ◦ f = idS.

Thus g is the inverse of f , so f is invertible.

(⇐) if f is invertible, then f is a bijection

Suppose f is invertible. Then there exists g : T → S such that:

g ◦ f = idS and f ◦ g = idT .

• Injectivity: If f(x1) = f(x2), apply g:

g(f(x1)) = g(f(x2)) ⇒ x1 = x2.

Hence f is injective.

• Surjectivity: For any y ∈ T , we have y = (f ◦ g)(y). Let x = g(y). Then f(x) = y.
Thus every y ∈ T has a preimage in S.

Therefore f is bijective.

10.2 Cardinality

Two sets have the same cardinality (number of elements it contains) if there exists a
bijection between the two sets. If two sets X and Y have the same cardinality, we write
|X| = |Y |

Contrapositive:

Let |A| = n, |B| = m,m ̸= n

If m < n, then at least one element ∈ B has no preimage, so not surjective If m > n, then
two elements ∈ A maps to one ∈ B, so not injective

19

11 INDUCTION PRINCIPLE

11 Induction Principle

Axiom of infinity (define the natural numbers recursively): ∀A ⊂ N, A ≠ ∅, ∃a0 ∈ A s.t.
a ∈ A, a ≥ a0

Well-Ordering Principle: Any non-empty set X ⊆ N of natural numbers has a least
element m ∈ X such that m ≤ x for all x ∈ X

In words, the set N of natural numbers is the smallest set containing the integer 0 and
the integer n+ 1 whenever n ∈ N

Weak induction: A proof by mathematical induction is a proof that covers the base case
p(0) is true, and the inductive case p(n) ⇒ p(n+ 1) for an arbitrary n ∈ N

Or, we can introduce an arbitrary base N where p(k) ⇒ p(k + 1) for an arbitrary integer
k ≥ N

Strong induction: To prove a statement P (n) with a base case P (n0) and assume all
previous cases P (n0), P (n0 + 1), . . . , P (k) are all true to prove P (k + 1) is true

11.1 Proof by Induction

Define the base case n = n0, where n0 is the smallest value for which you claim the
statement holds

Write an Inductive Hypothesis : Assume P (k) is true for k ≥ n0, where k is typically ∈ Z

Inductive Step: Using the assumption from above, prove P (k + 1) is true.

• Start with the LHS for n = k + 1, plug in what you know from the hypothesis
(e.g. substitution expressions, add the next term to a series)

• Simplify, show clearly how the assumption leads to the next case

• At the end, ensure the result matches the original claimed formula/form for n = k+1

End with a summary line: By induction, P (n) is true for all n ≥ n0

20

12 FACTORIZATION

12 Factorization

a divides b, and we write a|b, if there exists an integer q with b = qa, and a is a
divisor/factor of b

Lemma: If a|(b+ c), then a|b and a|c because b+ c = qa ⇒ c = qa− b ⇒ c = qa− ra =
(q − r)a

An integer p > 1 is prime if its only positive divisors are 1 and p. Otherwise, p is called
composite

Theorem: every integer n > 1 can be written as a product of one or more primes

Induction base case: n = 2, since 2 is prime, the claim holds

Inductive hypothesis: Fix k ≥ 2, and assume the claim holds for every integer m with
2 ≤ m ≤ k

Inductive step: prove the claim for n = k + 1

If prime, we are done. If composite, then it can be written as a product of two integers a
and b with 1 < a ≤ b < k + 1, in particular, 2 ≤ a ≤ k and 2 ≤ b ≤ k

By the inductive hypothesis, a, b can be written as a product of primes. Multiplying those
prime factorizations gives a prime factorization for k + 1

Theorem: Every positive integer can be expressed as a product of primes in a unique
way, up to reordering the factors

Let N = p1p2 . . . pr = q1q2 . . . qs

p1 divides N , so it must divide the right-hand product. If p1 = qk, then we can cancel
that common prime and get N

p1
= p2 . . . pr = q1 . . . qk−1qk+1qs

But, N
p1

< N , so this smaller integer would have two distinct prime factorizations,
contradicting the minimality of N , therefore p1 ̸= any qj

Thus, every integer > 1 has a prime factorization, and that factorization is unique up to
ordering.

21

13 DIVISION ALGORITHM

13 Division Algorithm

13.1 Division Algorithm

For any two integers n, d with d ≥ 1, there exist unique integers q and r such that
n = qd+ r, with 0 ≤ r < d

Where: n is the dividend, d is the divisor, q is the quotient, r is the remainder

Proof:

Consider the set R = {n− ad : a ∈ Z, n− ad ≥ 0}

By the well-ordering principle, R has a smallest element r such that r = n− qd

The proof argues that r < d. By contradiction, we take r ≥ d, then r − d = n− qd− d =
n− (q + 1)d ≥ 0

Thus comparing r − d and r, we get that n − (q + 1)d < n − qd ⇒ r − d < r, but this
contradicts that r was the smallest element in r, therefore r < d

For uniqueness, we supposed that there is another pair (q′, r′) such that n = q′d+ r′ with
0 ≤ r′ < d

By equating with n, we get that r − r′ = (q′ − q)d

By the division algorithm, d divides r− r′, but the latter is bounded between 0 and d− 1,
because the largest r value bounded in between integers [0, d] is d− 1. Thus, the largest
value for r − r′ is 0− (d− 1) = −(d− 1) and the smallest value is (d− 1)− 0 = d− 1

So, r − r′ ranges from −(d − 1) to d − 1, or simply −d < r − r′ < d, where the only
multiple of d in that range is 0, thus r = r′ and q = q′, so they are unique

13.2 Greatest Common Divisor

The greatest common divisor n,m ∈ Z is the unique integer gcd(n,m) ∈ N The gcd of
two integers is unique

Identities:

For a, b,m ∈ Z, gcd(am, bm) = mgcd(a, b) If a, b, c ∈ Z have gcd(a, c) = 1 and c|ab then
c|b If a, b ∈ Z and p is prime then if p|ab then p|a or p|b

Bezout’s Identity. For n,m ∈ N, there exists a, b ∈ Z with gcd(n,m) = an+ bm

If we take a smallest element d ∈ W (set is an + bm), then we may write d = sn + tm
and d = gcd(n,m) by its remainder r = n− qd = n− q(sn+ tm) = (1− qs)n+ qtm

Thus, r is a linear combination of n and m and is smaller than d, thus r must be zero
because d is the smallest positive linear combination.

Thus, n = qd+ 0 ⇒ d|n and d|m

22

14 THE EUCLIDEAN ALGORITHM

14 The Euclidean Algorithm

The Euclidean algorithm is an efficient algorithm for computing greatest common divisors.

By the lemma: If n = qm + r for any integers then gcd(n,m) = gcd(m, r), we have
gcd(n,m) = gcd(m, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk)

The algorithm must terminate in at most m + 1 steps, as the last step gcd(rk−1, rk) is
where the gcd can be computed explicitly as rk with remainder 0

Example: compute gcd(100, 28)

100 = 3(28) + 16

28 = 1(16) + 12

16 = 1(12) + 4

12 = 3(4) + 0

Now, find a, b such that an+ bm = gcd(100, 28)

We can reverse the algorithm, for example take 16 = 1(12) + 4 ⇒ 4 = 16− 1(12)

16 = 1(12) + 4 ⇒ 4 = 16− 1(12)

28 = 1(16) + 12 ⇒= 16− 1(28− 1(16))

100 = 3(28) + 16 ⇒= 2(100− 3(28))− 1(28) ⇒= 2(100)− 7(28)

We can verify that the last term equals 4

23

15 MODULAR ARITHMETIC

15 Modular Arithmetic

Recall congruent modulo n: n|(a− b) ⇔ a ≡ b (mod n)

Congruence is an equivalence relation on the integers. The set of all congruence classes
modulo n (quotient set of all equivalence classes) is denoted Zn

A general equivalence class [a] ∈ Zn takes the form [a] = {b ∈ Z : b ≡ a mod n}
[a] = {a+ qn : q ∈ Z}

Essentially, if two numbers give the same remainder when divided by n, they’re in the
same congruence class or “bin”

Also [a] means the equivalence class of all integers that have remainder a when divided by
n

Example: As integers -3, 1, 5, and 9 all differ by multiples of 4, we know that every pair
of these are congruent modulo 4

The congruence class [1] ∈ Z4 is [1] = {4q + 1 : q ∈ Z}

Every class can be represented by a unique integer r with 0 ≤ r ≤ n. So, Zn =
{, . . . , [n− 1]}

15.1 Operations in Zn

[a] + [b] = [a+ b] [a] · [b] = [ab]

For example, take [3], [5] ∈ Z6

We get different representatives of each class, [3] = [9] and [5] = [11]

We show that [3] + [5] = [3 + 5] because 8 divided by 6 also gives remainder 2 Also,
[9] + [11] = [20] where 20 divided by 6 is also 2

Furthermore, [3] · [5] = [15] = [3] and [9] · [11] = [99] = [3]

Thus, addition and multiplication do not depend on the choice of representative.

24

16 RINGS AND FIELDS

16 Rings and Fields

16.1 Rings

A ring R is any system where you can add and multiply, following certain rules. Zn is
always a commutative ring.

Rules: associativity of +, additive where 0 + a = a, commutativity of +, additive inverse
(∀a ∈ R,∃b ∈ R with a + b = 0), associativity of ·, multiplicative identity 1a = a = a1,
and distributivity (a(b+ c) = ab+ ac and (b+ c)a = ba+ ca)

A ring is said to be commutative if ab = ba,∀a, b ∈ R

16.2 Fields

A field is a commutative ring R where every nonzero element has a multiplicative inverse
(∀a ∈ R \ {0}, ∃b ∈ R with [a][b] = 1)

If a ∈ R has a multiplicative inverse, we call a a unit or say that it is invertible We say
a ∈ R is a zero-divisor if a ̸= 0 and ∃b ̸= 0 ∈ R with ab = 0

Example: in Z6, [3] has no multiplicative inverse

Find some b ∈ {0, 1, 2, 3, 4, 5} such that 3b ≡ 1 mod 6

By checking all possible b, we never get a remainder of 1. This happens because gcd(3, 6) =
3 ̸= 1.

Theorem: The congruence class [a] ∈ Zn has a multiplicative inverse ⇔ gcd(a, n) = 1

When gcd(a, n) = 1 we say a and n are relatively prime

25

17 CHEAT SHEET

17 Cheat Sheet

17.1 Propositional Logic

• Conditional: p → q (false only if p = T , q = F)

• Biconditional: p ↔ q (iff)

• Equivalences:

– Contrapositive: (p → q) ≡ (¬q → ¬p)

– De Morgan: ¬(p ∧ q) ≡ (¬p ∨ ¬q),
¬(p ∨ q) ≡ (¬p ∧ ¬q)

– Law of Excluded Middle: p ∨ ¬p = T

Inference rules:

• Modus Ponens: (p → q), p ⇒ q

• Modus Tollens: (p → q), ¬q ⇒ ¬p

Converse vs Contrapositive Statements

• Converse of P → Q is Q → P . Simply switch the hypothesis and the conclusion of
the original statement. This may change whether the statement is T/F

• Contrapositive to P → Q is ¬Q → ¬P

17.2 Proof Techniques

General Strategy:

• restate in your own words

• list known facts

• clarity the goal

• look for patterns/theorems

• try examples, use concrete numbers or finite sets to test ideas

• break into sub-parts

• don’t forget both sides of ⇔:⇒ ∧ ⇐ and =:⊂ ∧ ⊃

• try to visualize (e.g. sets)

• Direct Proof: Show P → Q.

• Contrapositive: Show ¬Q → ¬P .

26

17 CHEAT SHEET

• Contradiction: Assume ¬Q and derive a falsehood.

17.3 Set Theory

• Common Sets:
N ⊂ Z ⊂ Q ⊂ R ⊂ C

Operations on Sets

• Union: A ∪B = {x : x ∈ A ∨ x ∈ B}

• Intersection: A ∩B = {x : x ∈ A ∧ x ∈ B}

• Difference: A \B = {x : x ∈ A ∧ x /∈ B}

• Symmetric Difference: A∆B = (A \B) ∪ (B \ A)

• Inclusion-Exclusion:
|A ∪B| = |A|+ |B| − |A ∩B|

• |B \ A| = |B ∩ AC |

17.4 Relations

• Cartesian Product: A×B = {(a, b) : a ∈ A, b ∈ B}

• Relation: R ⊆ A×B

• Equivalence Relation: Reflexive, Symmetric, Transitive.

• Partial Order: Reflexive, Antisymmetric, Transitive.

• Total Order: Partial order + comparability (∀x, y : x ≤ y ∨ y ≤ x).

17.5 Equivalence Classes

• Equivalence class of a: [a] = {x ∈ X : x ∼ a}

• Partition: Disjoint classes covering X.

• Congruence mod n:
a ≡ b (mod n) ⇔ n | (a− b)

Example: 10 ≡ 2 (mod 4)

• Equivalence classes either are completely separate or exactly the same

• If two equivalence classes share even one element, they must be identical

• Parity is the property of an integer of whether it is even or odd

27

17 CHEAT SHEET

• Ex: On Z, define aRb if a+b
2

∈ Z, meaning a and b have the same parity, or a ≡ b
(mod 2)

17.6 Functions

• Function f : X → Y : ∀x ∈ X, ∃!y ∈ Y with f(x) = y

• Image: f(A) = {f(x) : x ∈ A}

• Preimage: f−1(B) = {x ∈ X : f(x) ∈ B}

• Injective (1–1): f(x1) = f(x2) ⇒ x1 = x2 no two inputs map to the same output

• Surjective (onto): ∀y ∈ Y,∃x ∈ X : f(x) = y every output is hit by some input
⇔ Im(f) = Y

• Bijective: Both injective & surjective.

• Identity: idX(x) = x

• Inverse: f−1 exists ⇔ f is bijective.

• f is invertible if ∃g s.t. g ◦ f = idA and f ◦ g = idB

Let α : A → B is injective, then: - α(A) ⊆ B - |A| ≤ |B|

For the identify function idA, if BA = idA, then A is injective because (BA)(a) = a

17.7 Inverses & Cardinality

• Bijection ⇔ Invertible.

• If |A| = n, |B| = m:
– If m < n: not surjective

– If m > n: not injective

• Equal cardinality: |X| = |Y | ⇔ ∃ bijection f : X → Y

17.8 Induction Principle

• Well-Ordering Principle: Every non-empty X ⊆ N has a least element.

• Weak Induction:
1. Base Case: prove P (0).

28

17 CHEAT SHEET

2. Inductive Step: P (n) ⇒ P (n+ 1).

• Strong Induction: Assume P (k) true for all k ≤ n, then prove P (n+ 1).

Tricks during inductive step: - General: find a way to relate this step to the base case
- Don’t simplify (k+1) multiplications until necessary - Break down constant multiples
(e.g. 9 = 8 + 1) - Change inductive step: 3n − 1 = 8m ⇒ 3n = 8m + 1 - Use parity
properties: k(k + 1) = even, k + (k + 1) = odd - For series, add the next step to RHS and
simplify, then sub k+1 for n and solve for LHS, equate both sides

29

	Propositional Logic
	Connectives

	Valid Arguments
	Statement Definitions
	Logical Relationships
	Important Tricks and Definitions

	Proof Examples
	Proof with multiple premises
	Methods of proof
	Logic Gates

	Set Theory
	Quantifiers and definitions
	Sets

	Operations on Sets
	Definitions
	Proof: A \subseteq B \iff A \cap B = A
	Finite and Disjoint Sets
	Inclusion-Exclusion Theorem

	Equivalence Relations and Functions
	Cartesian Product
	Binary Relation
	Orderings
	Equivalence Relations

	Equivalence class and congruence classes
	Congruence is an equivalence relation proof
	Equivalence class and congruence class
	Partition

	Functions
	Definition
	Images

	Function properties
	Injective, Surjective, Bijective
	Composition of Functions
	Identity function and inverses of functions

	Inverse of a Function
	Bijection-Invertibility Equivalence
	Cardinality

	Induction Principle
	Proof by Induction

	Factorization
	Division Algorithm
	Division Algorithm
	Greatest Common Divisor

	The Euclidean Algorithm
	Modular Arithmetic
	Operations in \mathbb{Z}_{n}

	Rings and Fields
	Rings
	Fields

	Cheat Sheet
	Propositional Logic
	Proof Techniques
	Set Theory
	Relations
	Equivalence Classes
	Functions
	Inverses & Cardinality
	Induction Principle

